ARG59935
anti-KCND2 / Kv4.2 antibody
anti-KCND2 / Kv4.2 antibody for Western blot and Mouse
Overview
Product Description | Rabbit Polyclonal antibody recognizes KCND2 / Kv4.2 |
---|---|
Tested Reactivity | Ms |
Tested Application | WB |
Host | Rabbit |
Clonality | Polyclonal |
Isotype | IgG |
Target Name | KCND2 / Kv4.2 |
Antigen Species | Human |
Immunogen | Recombinant fusion protein corresponding to aa. 501-630 of Human KCND2 (NP_036413.1). |
Conjugation | Un-conjugated |
Alternate Names | KV4.2; RK5; Voltage-gated potassium channel subunit Kv4.2; Potassium voltage-gated channel subfamily D member 2 |
Application Instructions
Application Suggestion |
|
||||
---|---|---|---|---|---|
Application Note | * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. | ||||
Positive Control | Rat brain and THP-1 | ||||
Observed Size | 82 kDa |
Properties
Form | Liquid |
---|---|
Purification | Affinity purified. |
Buffer | PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. |
Preservative | 0.02% Sodium azide |
Stabilizer | 50% Glycerol |
Storage Instruction | For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. |
Note | For laboratory research only, not for drug, diagnostic or other use. |
Bioinformation
Database Links |
Swiss-port # Q9Z0V2 Mouse Potassium voltage-gated channel subfamily D member 2 |
---|---|
Gene Symbol | KCND2 |
Gene Full Name | potassium channel, voltage gated Shal related subfamily D, member 2 |
Background | Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. Four sequence-related potassium channel genes - shaker, shaw, shab, and shal - have been identified in Drosophila, and each has been shown to have human homolog(s). This gene encodes a member of the potassium channel, voltage-gated, shal-related subfamily, members of which form voltage-activated A-type potassium ion channels and are prominent in the repolarization phase of the action potential. This member mediates a rapidly inactivating, A-type outward potassium current which is not under the control of the N terminus as it is in Shaker channels. [provided by RefSeq, Jul 2008] |
Function | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Mediates the major part of the dendritic A-type current I(SA) in brain neurons (By similarity). This current is activated at membrane potentials that are below the threshold for action potentials. It regulates neuronal excitability, prolongs the latency before the first spike in a series of action potentials, regulates the frequency of repetitive action potential firing, shortens the duration of action potentials and regulates the back-propagation of action potentials from the neuronal cell body to the dendrites. Contributes to the regulation of the circadian rhytm of action potential firing in suprachiasmatic nucleus neurons, which regulates the circadian rhythm of locomotor activity (By similarity). Functions downstream of the metabotropic glutamate receptor GRM5 and plays a role in neuronal excitability and in nociception mediated by activation of GRM5 (By similarity). Mediates the transient outward current I(to) in rodent heart left ventricle apex cells, but not in human heart, where this current is mediated by another family member. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCND2 and KCND3; channel properties depend on the type of pore-forming alpha subunits that are part of the channel. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes. Interaction with specific isoforms of the regulatory subunits KCNIP1, KCNIP2, KCNIP3 or KCNIP4 strongly increases expression at the cell surface and thereby increases channel activity; it modulates the kinetics of channel activation and inactivation, shifts the threshold for channel activation to more negative voltage values, shifts the threshold for inactivation to less negative voltages and accelerates recovery after inactivation. Likewise, interaction with DPP6 or DPP10 promotes expression at the cell membrane and regulates both channel characteristics and activity (By similarity). [UniProt] |
Cellular Localization | Cell membrane; Multi-pass membrane protein. Cell projection, dendrite. Cell junction, synapse. Perikaryon. Cell junction, synapse, postsynaptic cell membrane. Cell projection, dendritic spine. Cell junction. Note=In neurons, primarily detected on dendrites, dendritic spines and on the neuron cell body, but not on axons. [UniProt] |
Calculated MW | 71 kDa |
PTM | Phosphorylation at Ser-438 in response to MAPK activation is increased in stimulated dendrites. Interaction with KCNIP2 and DPP6 propomtes phosphorylation by PKA at Ser-552. Phosphorylation at Ser-552 has no effect on interaction with KCNIP3, but is required for the regulation of channel activity by KCNIP3. Phosphorylation at Ser-552 leads to KCND2 internalization (By similarity). Phosphorylated by MAPK in response to signaling via the metabotropic glutamate receptor GRM5 (By similarity). Phosphorylation at Ser-616 is required for the down-regulation of neuronal A-type currents in response to signaling via GRM5 (By similarity). [UniProt] |