ARG57902

anti-SMN / Gemin1 antibody

anti-SMN / Gemin1 antibody for ICC/IF,Western blot and Human,Mouse,Rat

Overview

Product Description Rabbit Polyclonal antibody recognizes SMN / Gemin1
Tested Reactivity Hu, Ms, Rat
Tested Application ICC/IF, WB
Host Rabbit
Clonality Polyclonal
Isotype IgG
Target Name SMN / Gemin1
Antigen Species Human
Immunogen Recombinant fusion protein corresponding to aa. 1-282 of Human SMN / Gemin1 (NP_059107.1).
Conjugation Un-conjugated
Alternate Names SMNC; BCD541; GEMIN1; TDRD16B; C-BCD541

Application Instructions

Application Suggestion
Tested Application Dilution
ICC/IF1:50 - 1:200
WB1:500 - 1:2000
Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist.
Positive Control 293T
Observed Size 38 kDa

Properties

Form Liquid
Purification Affinity purified.
Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol.
Preservative 0.02% Sodium azide
Stabilizer 50% Glycerol
Storage Instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use.
Note For laboratory research only, not for drug, diagnostic or other use.

Bioinformation

Gene Symbol SMN2
Gene Full Name survival of motor neuron 2, centromeric
Background This gene is part of a 500 kb inverted duplication on chromosome 5q13. This duplicated region contains at least four genes and repetitive elements which make it prone to rearrangements and deletions. The repetitiveness and complexity of the sequence have also caused difficulty in determining the organization of this genomic region. The telomeric and centromeric copies of this gene are nearly identical and encode the same protein. While mutations in the telomeric copy are associated with spinal muscular atrophy, mutations in this gene, the centromeric copy, do not lead to disease. This gene may be a modifier of disease caused by mutation in the telomeric copy. The critical sequence difference between the two genes is a single nucleotide in exon 7, which is thought to be an exon splice enhancer. Note that the nine exons of both the telomeric and centromeric copies are designated historically as exon 1, 2a, 2b, and 3-8. It is thought that gene conversion events may involve the two genes, leading to varying copy numbers of each gene. The full length protein encoded by this gene localizes to both the cytoplasm and the nucleus. Within the nucleus, the protein localizes to subnuclear bodies called gems which are found near coiled bodies containing high concentrations of small ribonucleoproteins (snRNPs). This protein forms heteromeric complexes with proteins such as SIP1 and GEMIN4, and also interacts with several proteins known to be involved in the biogenesis of snRNPs, such as hnRNP U protein and the small nucleolar RNA binding protein. Four transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Sep 2008]
Function The SMN complex plays a catalyst role in the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. Dissociation by the SMN complex of CLNS1A from the trapped Sm proteins and their transfer to an SMN-Sm complex triggers the assembly of core snRNPs and their transport to the nucleus. Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development. Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). [UniProt]
Cellular Localization Cytoplasm, Nucleus, gem, Cajal body, Cytoplasmic granule, Cytoplasm, myofibril, sarcomere, Z line. [UniProt]
Calculated MW 32 kDa